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Abstract

The convergence of scalable computer architectures using clusters of PCs (or PC-SMPs_ w,ith commodity, net-

working has become an attractive platform for high end scientific computing, Currently, message-passing and shared

address space (SASI are the tw'o leading programming paradigms for these systems. Message-passing has been stan-

dardized v, ith MPI, and is the most common and mature programming approach. Howe',er, message-passing code

development can be extremel', difficult, especially for irregularly structured computations SAS offers substantial

ease of programming, but ma', suffer from performance limitations due to poor spatial locality' and high protocol

overhead. In this paper, v.e compare the performance of and programming effor: required for six apphcations under

both programming models on a 32 CPU PC-SMP cluster. Our application suite consists of codes that typicall} do not

exhibit high efficiency: under shared memoD' programming, due to their high communication to computation ratios

and complex communication patterns. Results indicate that SAS can achieve abou', half the parallel efficiency of MP1

for most of our applications: however, on certain classes of problems SAS performance is competitive v, ith MPI. We

also present hey, algorithms for improving the PC cluster performance of MPI collective operations.

1 Introduction

The convergence of scalable computer architectures using clusters of PCs with commodit? networking has become
an attractive platform for high-end scientific computing. Currently, message-passin_'_nd shared address space (SAS)
are the two leading programming paradigms for these systems. Message-passing has been standardized with MPI [6],
and is the most common and mature programming approach. It provides both functional and performance porta-
bility. However. message-passing code development can be extremely, difficult, especially for irregularly' structured
computations. A coherent shared address space has been shown to be ve_ effective at moderate-scale for a wide
range of applications when supported efficiently in hardware. The automatic management of naming and coherent
replication in this programming model also substantially' eases the programming task compared to explicit message
passing, especially for complex irregular applications that are naturally becoming increasingly popular as multipro-
cessesing matures. This ease of programming can often be translated directly into performance gains [ 19, 20]. Even as
hardware-coherent machines replace traditional message passing systems at the high end. clusters of commodity. PCs
and PC-SMPs have become increasingly popular for scalable computing. On these, the message passing programming
model is dominant and the shared address space model unproven since it is implemented in software. Thus. especially
given the ease of programming, it is important to understand the performance tradeoffs of message passing with the
shared address space programming model on clusters.

Approaches to support a shared address space in software across clusters differs not only in the specialization
and efficiencies of networks but also in the granularities at which they provide coherence. Fine-grained software



coherence uses either code instrumentation [15, 51 for access control or commoditx-oriented hardx_are support [22]

with protocol implemented in software. Page-grained software coherence takes advantage of the virtual memor',

management facilities to provide replication and coherence at page granulariL_ [14]. Tv alleviate false sharing and

fragmentation problems, a relaxed consistency model is used to buffer coherence actions. Multiple writer protocols

allow more than one processor to modify' copies of a page locally' and incoherently between the synchronization

points, reducing the impact of write-write false sharing, and making the page consistent only, when needed. Lu [7]

compare the performance of the PVM and the TreadMarks page-based soft_are shared memory libran on an 8-

processor network of ATM-connected workstations and on an 8-processor IBM SP-2. They find that TreadMarks

generally performs a little worse. Karlsson and Brorsson [13] compared the characteristics of communication patterns

in message passing and page-based software shared memo U programs, using MPI and TreadMarks running on an

IBM SP2. They' found that the fraction of small messages in the TreadMarks executions lead to poor performance.

However, the platforms they use are much lower-performance and smaller scale and not SMP-based. The protocols

are not high efficient. Recentl\. both the communication network and protocols for shared virtual memor', have

made great progress. Some gigabits-networks (per second) have been put into use. A ne_ SVM l _ protocolcalled

Gel',IZg_.A has also been developed for the page-grained shared address space on clusters. Gei',:I.v_ uses general-

purpose network interface support to significantly' reduce protocol overheads. It has been shown to perform quite well

for moderate-scale systems on a fairly wide range of applications: achieving at least half of the parallel efficiency of

a high-end hardware-coherent system and often exhibiting better behavior [10. 1]. Thus. a stud', of comparing the

performance of C-eNrl¢_ against message passing implementations of the same applications, which is the dominant

way, of programming applications for clusters today, becomes necessary, and important.

In this paper, we compare the performance of these two programming models using the best implementation

available to us (MPI/Pro from MPI Softtech INC. and the geI',lZI_ SVM protocol for SAS) on a clusters of eight.

4-way SMPs (for a total of 32 processorsl. The applications used are those that have been selected to compare the

performance and programming ease on hardware-coherent platforms, including regular as well as dynamic irregular

applications. Our application suite includes codes that scale well on tightly-coupled machines as well as codes that

are challenging to obtain scalable performance on due to their high communication to computation ratios and complex

communication patterns. With a couple of exceptions, they are generally applications where developing efficient

message passing implementations is not extremely' difficult (even though it still takes a lot more work than the shared

address space implementations). Porting these applications to the cluster did not require code modifications: hov, ever,

some optimizations were performed to improve performance on the cluster platform [11. 18]. We find that while

some classes of applications can achieve similar performance for MPI and SVM on the cluster, in most cases MPI

performs significantly' better than the shared address space model. The performance of SVM suffers greatly from

the protocol overhead, especially' at the synchronization points, which often become the performance bottleneck.

Further research into reducing the protocol overhead for SVM is required to achieve high performance. Some of

the applications we have selected, such as 1-D FFT and radix sorting, are difficult to implement efficientlx in either

programming model on a cluster due to the limited bandwidth of the memory bus on the SMP nodes. This increases the

challenge for scalable performance since the memory bus is also involved in communication. Some other, irregular and

unpredictable applications are challenging to to implement efficiently, in message passing but have Io_ communication

requirements, so for these the performance of the shared address space programming model is expected to be much

better. For example, while we don't have a message passing implementation of this application, the speedups for the

volrend volume rendering application is approximately 27 on 32 processors using the same platform with the GeNZg,.A
protocol [10].

Currently', if very high performance is the goal, then the difficulty of MPI programming appears to be justified for

commodity' clusters of SMPs today'. On the other hand, if ease of programming is important then SVM provides it

at roughly, a factor-of-two cost in performance for many applications (and less for othersl This ma_ be considered

encouraging for SVM, given the ease of programming advantages for complex applications as well" as the difficult

nature of our application suite and the relative maturity of the MPI library'. Application-din en research into coherence

protocols and extended hardware support should reduce SVM and SAS overheads on future systems.

We also present new algorithms for implementing MPI collective functions on our PC cluster plattk_rm. Results

show that these techniques achieve a significant improvement compared the default MPlfPro implementation.

The rest of the paper is organized as follows Section 2 describes the platform we used and the implementation of

different programming models on it. Applications are discussed in Section 3. In Section 4. _ e analyze the performance

differences between the two programming models for each application. Section 5 explores new algorithms used to

efficiently implement collective functions for MPI. Finallx. we present our conclusions in Section 6.

11 The words 5AS and S!.'M are used synonymousl', lhroughoul Ibis paper



2 Platform and Programming Models

The platform we used for our study is a cluster of 4-way Pentium Pro SMPs. Each node has 4 CPUs running at
200MHz. Each processor has separate 8KB data and instruction LI caches and a unified 4-way set-associative 512KB
L2 cache. Each node has 512MB main memou, running WINDOWS NT 4.0. The nodes are connected together
either by Myrinet [2] or Giganet [8]. The SAS and MPI programming models are built on top of these two netx_orks
respectively.

2.1 SAS Programming Model

Much research has been done in the design and implementation of shared address space for clustered architectures.
both at page granularity and at finer fixed granularities through code mstrumemation. Among the most popular _av
to support a coherent shared address space in software on clusters, is page-based shared x irtual memoo (SVM). SVM
takes advantage of the virtual memory management facilities to provide the replication and coherence at page gran-
ularity. To alleviate false sharing and fragmentation problems, SVM uses the relaxed memory consistency' model to
buffer coherence actions such as invalidations or updates, and postpone them until a synchronization Ix)int. Multiple
writer protocols are used to allow more than one processor to modify copies of a page locally and incoherently be-
tween synchronization points, reducing the impact of write-write false sharing and making the page consistent only
when needed by applying di f f s and wr i t e notices. Many different protocols have been developed which use dif-
ferent timing strategies to propagate write notices and apply the invalidations to pages. Recently. a new protocol for
SVM called GeNIMA has been developed and has shown good performance at moderate-scale systems for a fairlx
wide range of applications: achieving at least half of the parallel efficiency of a high-end hardware-coherent system
and often exhibiting much better behavior [10, 1]. It uses general-purpose network interface support to significantly
improve protocol overheads. Thus. in this study we select the GeNIMA as our protocol for the SAS programming
model. GeNIMA is built on top of the VMMC, a high-performance, user-level virtual memory mapped communica-
tion library [4]. VMMC itself, runs on top of the Myrinet network.

Each SMP node in our cluster is connected to a Myrinet system area network via a PCI bus. The Mvrinet netv, ork
interfaces are connected together through a single 16-wax Mvrinet crossbar switch, thus minimizing contention in the
interconnect. Each network interface has a 33MHz programmable processor and connects nodes to the network v, ith
two unidirectional links of 160 MB/s peak bandwidth each. The actual node-to-network bandwidth is constrained bx
the 133MB/s PCI bus.

The parallelism constructs and calls needed by the SAS programs are exactly the same as those used in our
hardware-coherent platform implementation (SGI Origin 2000) [17, 18. 19]. This make portability trivial bet,aeen
these platforms.

2.2 Message Passing Programming Model

The message passing implementation used in this stud} is from MPI Software Technolog 5 Inc.. developed directh
on top of Giganet networks by the VIA [9] interface. By selecting MPIfPro, instead of building our own MPI librar-,
from VMMC. we can compare the best known versions of both programming models. Thus our final conclusions are
not affected by a poor implementation of the communication layer. Fortunatel}. the VIA interface and the VMMC
have similar latency' (Figure 1) and bandwidth (Figure 2) characteristics on our cluster platform. Giganet performs
slightly better for short messages and while Myrinet has a small advantage for for larger messages. Thus, for message
passing programs, there should be little performance difference for similar implementations across these two networks.
Similarly to Myrinet, the Giganet network interface is connected together by a single-Giganet crossbar switch

o

o_D_o slm_

1Figure 1: The latency of different message sizes for VMMC and \ IA communicauon interface
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Figure 2: The bandwidth of differenl message sizes for VMMC and VI -Xcommumcation interface

3 Applications

Our application suite consists of codes used in previous studies to examine the performance and implementation

complexity of various programming models on hardware-supported cache-coherent platforms. These codes include

regular applications (FT, OCEAN and LU) and irregularly structured applications I RADIX Sorting. SAMPLE Sorting

and N-body). All six codes have either high communication to computation ratio or complex communication patterns.

making scalable performance a difficult task on cluster platforms. FTT uses a non-localized but regular all-to-all

personalized communication pattern to perform a matrix transposition: i.e. e_ er). process communicates with every

other, sending different data across the network. OCEAN exhibits primarily nearest neighbor patterns, but in a multi'-

grid. rather than a single-grid formation. RADIX sorting uses all-to-all personalized communication but in an irregular

and scattered fashion. SAMPLE sorting also uses all-to-all personalized communication, however, the communication

patterns are more regular than in RADIX sorting. LU uses one-to-many non-personalized communication. Finally.

N-BODY requires all-to-all, all-gather communication and unpredictable send:recv communications patterns. These

applications have shown high performance under both MPI and SAS. for rea:,onabl_ large data sets on hardware-
supported coherent platforms.

Most of the MPI programs were been ported directly' onto the cluster platform without any changes. However.

OCEAN and RADIX sorting required some changes for high-performance. In OCEAN. the matrix is partitioned by

the rows instead of the blocks (see Figure 3). This allows each processor to communicate _ ith onl_ its upper and Io\_ er

neighbors, thus reducing the number of messages sent across the network, while improx ing the spatial localit_ of the

communicated data. For RADIX, in the key exchange stage, each processor _sends onl_ one message to every other

processor, containing all its chunks of keys that are destined for the destination processor. The destination processor

then reorganize the data chunks to their correct positions.

Block \_,_x R _x,,\x :

Figure 3: The partition method for ocean for four processor case: block v,a_ _ > roy, way

On hardware-supported coherent platform, each processor sends contiguous, ix -destined chunk of keys directl_ as

a separate message. This is done so that the data can immediately be placed into the correc_ position at the destination
processor. As a result, multiple message are sent from one processor to every processor. While this method succeeds

on the hardware-supported coherent systems, the modified approach is better suited for cluster platforms. On clus-

ters systems, there is a performance gain when reducing the number of sent messages even though local computation

4



is increased. In order to stud) two-level architecture effect (intra node and inter nodec we test our applications bx
reorganizing the communication sequence (intra-node first, inter-node first, intra-node and inter-node mixed). Inter-
estingly+ our results sho_' that the MPI programs are insensitive to the communication sequence and this method of
exploiting a two-level communication hierarchy, and the various communication sequences have almost no effect on
the application performance.

For the SAS codes, FFE LU, and SAMPLE sorting, were ported without anx modifications. In RADIX sorting,
we used the improved version [18]. Here, instead of exchanging the keys in a scattered way, keys that are destined
for the same processor are buffered together and then written to their destination. Several modification were applied
to original version of OCEAN to improve performance [10] on the clusters. The matrix was partitioned bx rows
across processors instead of blocks, and significant changes were made to the data structures. The N-BOD_," code
also required substantial modifications since the original version suffered from the high overhead of synchronizations
used during the shared-tree building phase. A new tree building method called barnes-spatial has been developed to
completely eliminate these expensive synchronization operations [16].

These applications have been previously used to evaluate the performance of different programming models on a
hardware-supported cache-coherent platform. In that study, it was shown that SAS programs provide substantial ease
of programming compared to message-passing implementations, and performance varies depending on the application
but is often better for SAS as well. The ease of programming holds true on cluster systems, although some SAS
code restructuring was required to improve performance. For example, in N-bodv the tree-building methodology has
been changed from the original synchronization intensive scheme to spatial method. Nonetheless. the implementation
is still easier than the message-passing approach, as has been argued earlier in the hardware-coherent context [12],
where it was shown that this implementation is valuable for high-end scalabilit.,, even on hardware-coherent machines.

A comparison between SAS and MPI programmability is presented in Table 1. Notice that SAS programs require
fewer lines of essential code lines (excluding the initialization and debugging code and comments) compared with
message passing. As application complexity (e.g. irregularity and dynamic nature) increases we see a more significant
reduction of programming effort using SAS.

i FTT LU

SAS +, 210 309
MPI 222 470

OCEAN RADIX I SAMPLE N-BODY

2878 201 ] 450 950
4320 384 479 1371

Table 1: The number of the essential code lines needed b', SAS and MPI for different applications.

4 Performance Analysis

In this section, we compare the performance of our applications using both programming paradigms. We first examine
the speedup numbers, and then analyze the performance in more detail using time breakdowns. The speedups for dif-
ferent programming models are based on the best sequential time, without an,, parallel programming model overhead.
The total running time is divided into three components: LOCAL, RMEM, and SYNC. The LOCAL time includes the
CPU computation time and the CPU waiting time for local cache misses. The RMEM time is the CPU time spent for
remote communication and SYNC is the time spent for synchronization. We select two data sets for each application.
First we examine a "basic" data set. at which the Shared Virtual Memory begins to perform reasonably "well'" [10].
Next. we use a larger data set, since in general, increasing the problem size tends to improve mare inherent program
characteristics, such as load balance, communication to computation ratios, and spatial locality.

4.1 FFT

FFT has very high communication to computation ratio, which diminishes onlx logarithrmcally with problem size. It
needs a non-localized but regular all-to-all personalized communication pattern to perform the matrix transposition.
and there is no overlap between the transposition and computation. It is much more difficult to achieve performance
on the 1-dimensional FTT used here than on higher-dimensional FFTs. The speedups for MPI and SAS are presented
in Figure 4.

Both MPI and SAS did not achieve good scalabilit). Increasing the data set size helped but not significantb.
This is mainly due to the pure communication transpose stage whose communication to computation ratio does not
change with problem size. It occupies only 16ek of the total execution time in sequential run. However. the percentage
increases to 50% for 32-processor run. Dealing with the scaling of the pure all-to-all communication is ver_' difficult.
As the number of nodes that fetch data from each node increases, the contention in the network interface of the

servicing node increases. At the same time, since these remote requests need to access the memory bus, the additional
contention for the memory bus affects local memory, access time as well. Also. the program suffers from the low
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Figure 4: Speedups of FF'I" for SAS and MPI on 16 and 32 processors for IM and 4M data set size

bandwidth of the memory bus on our commodity 4-way SMP nodes, which is a significant problem with commodit>

SMPs. High contention is caused when 4 processors work simultaneously within a node. For example, the LOCAL

time (which includes local memory,' stall time) for 4M data set when using 2 processors is about 6s. This drops to onh'

4.8s (compared to ideal of 3s), when 4 processors are used.

Even though both programming models do not scale well for FFT, MPI significantl> outperforms SAS. To better

understand the performance difference. Figure 5 presents the breakdown for 4M data set size running on 32 processors.

3500

3000

A2500

.._2000

._ 15oo
1000

500

0

SAS MPI

OSYNC

• RMEM

OBUSY

Processorlden_fier

Figure 5: The FF'I- time breakdov, n for SAS and MPI on 32 proce_->ors 4M da:a set size

Surprisingly we find that all the three components (LOCAL, RMEM, and SYNC) times are much higher in SAS

than in MPI. In order to maintain the page coherence, high protocol overhead is introduced in SAS programs, including

computing the diffs, creating the timestamps, creating the write notices, and garbage collection. This dramatically

increases the compute time, and also causes an increase in local cache misses for the application data, leading to

higher LOCAL time. The diffs generated for the coherence will be immediatel? propagated to the home of the pages.

thus increasing the network traffic and possibly causing more contention. At synchronization points, handling the

protocol requirements highly dilates the synchronization inte_'al, including the extensive invalidation of necessar_

pages. In the MPI program, all these protocol overheads do not exist. MPI does need to pack the data at the source

and unpack them at the destination to make communication more efficient. Ho_ever. this overhead is much smaller

and completely local compared with the protocol overhead in SAS program. If the SAS program were structured such

that each the sub-matrix transposed to a different processor is allocated separately (similarl> to MPI program), instead

of all being allocated together in a shared data structure of a row set or a full matrix (which is most natural due to the

row-based partitioning of the computation), the performance of the transpose could be improved. But this causes a lot

of the programming ease of SAS to be given up. and in fact can make the row-wise local FF'I's complex to implement.

4.2 OCEAN

OCEAN exhibits a commonly used nearest neighbor pattern, but in a muhi-grid rather than a single-grid formation.

The communication to computation ratio is large for smaller problem sizes but dimini.,,hes rapidl> with increasing

problem sizes. The speedups are shown in Figure 6. The speedups are still relativel> lower compared with those

that we have achieved on the hardware-supported cache-coherent platform. Larger data sets improve performance.

especially for the MPI programs.
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Figure 6: Speedups of OCEAN for SAS and MPI on 16 and 32 processors for 25gx258 and 514x514 grid sizes
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Figure 7: The OCEAN time breakdown for SAS and MPI on ?2 processors 514x514 grid size

The SAS program suffers from the expensive overhead of synchronization. This is clearlx shown in Figure 7. After

each nearest-neighbor communication, a synchronization operation is required in SAS to maintain coherence. Thus.

there are many of thousands of barrier operations throughout OCEAN. Further analysis of the sxnchronization time

shov,,s that about 50% of the synchronization time is spent waiting, and 50% of the time is for protocol processing [ 1].

Thus, the synchronization cost can be improved either by reducing protocol o_erhead or b> increasing the data set size.

There is not enough computational work between the synchronization points fo: the 51 I _ 514 grid size, especiall5
when this grid size is further coarsened into smaller grid sizes during program execution. However. OCEAN has very

high memory requirement due to use of more than twenty large data arrays. Thi_, prevents us from running larger data

sets. In the MPI program, the synchronization is much cheaper since it is implicitly implemented in the send/receive

pairs.

4.3 LU

LU uses one-to-many non-personalized communication: the pivot block and the pivot roy, blocks are communicated

to ,j_ processors each. The communication needs are relatively small compared with our other applications. Thus,

we expect better performance for this application, as seen in Figure 8. From the time breakdown in Figure 9. we also

see that most of the overhead is in LOCAL time. Here, the communication cost is vet) small. Further improvement

can be achieved by reducing the synchronization cost, though this is mainly walt time caused by load imbalance.

Notice that for LU, the performance of SAS is ver) close to MP] since both of them have similar time breakdowns.

The protocol overhead running SAS program becomes less important for this application. This is because, unlike in

FFT, the matrix is already organized in a 4-dimensional array to ensure that the blocks assigned to a processor are

allocated locally and contiguously. Thus, each processor will only need to modifx its own blocks which are allocated
locally, and the modifications are immediately applied to the data pages. No di'ffs are generated and propagated to

other nodes. This will greatly reduce the overhead of protocol processing. These performance results indicate that

the two programming models do not show' much performance difference, due to the relatively low communication
requirements of LU.
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Figure 9: The LU time breakdown for SAS and MPI on 32 processor, for 6144=6144 matrix size

4.4 RADIX

The above three applications (FFY, OCEAN, and LU). are all sho_ regular characteristics. The following three codes

we investigate, RADIX, SAMPLE, and N-BODY, are irregularl 5 structured. RADIX sort uses all-to-all personalized

communication but in an irregular and scattered fashion. It also has aver), high communication to computation ratio

that is independent of problem size and number of processors. This application has high band_idth requirements

for the memory bus, which is often not satisfied on current SMP platforms. Thus. high contention is caused on the

memory bus when 4 processors are used on a node. The "aggregate LOCAL" time across processors is much higher

than the uniprocessor case. This leads to the poor performance shown in Figure 10. MPI still performs better than

SAS. From the time breakdown in Figure 11, we can find that the RMEM time and SYNC time are much higher for
SAS. This is due to similar reasons as discussed in the FFT subsection, as the communication is all-to-all in chunks

here as well (albeit irregular).

lo

t 6

14B 32 16 32

4M 321_

Figure 10: Speedups of RADIX for SAS and MPI on 16 and 32 processors for 4M and 32M integers

The implementation of the all-to-all communication in the MPI Radix program on the cluster is different from that
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Figure 11: The RADIX time breakdown for SAS and MPI on 32 processors for 32M integers

used in the MPI version on a hardware-supported cache-coherent platform. In the cluster MPI program, each proces-
sor sends only one message to every other processor, containing all the chunks that are destined for the destination
processor. The destination processor will then reorganize the data chunks to their correct positions. This is similar to
the algorithm used in the NAS parallel applications IS [3]. But on the hardware-supported cache-coherent platform.
each processor will send each contiguously destined chunk directly as a separate message so that the destination can
put the data into the correct position, thus leading to multiple messages from each processor destined for eve_' other
processor. This is a tradeoff between computation and communication and depends on the cost of communication
messages on the machines. On high-overhead and low-bandwidth clusters, using less messages is more important than
the computation involved in gathering and scattering chunks.

4.5 SAMPLE

SAMPLE sorting also uses an irregular personalized all-to-all communication, but compared with RADIX sorting.
it is more regular and the communication is much better structured. SAMPLE speedup., are presented in Figure 12.
Compared with RADIX, the performance is much better. Notice that we use the same sequential time to compute the
speedups for both RADIX and SAMPLE sorting. In SAMPLE sort, each processor does a local sort on its partitioned
data first using the radix sort, then performs the all-to-all communication to exchange kex s. followed by another local
sort on the newly-received data. In the sequential case. onlv one local sort is enough to sort all the keys. Thus. v,e can
reasonably expect SAMPLE sort to achieve only 50% parallel efficiencx.

lo

8

t e

4M 32H

Figure 12: Speedups of SAMPLE for SAS and MPI on 16 and 32 proces_or_ for 4M and 32M integers

If we look at the SAMPLE time breakdown in Figure 13, and compare with RADIX time breakdowns in Figure 11,
for both MPI and SAS, the RMEM time and SYNC time are greatly reduced. On the SG1 Origin2000, we found that
in most cases RADIX performs better than SAMPLE sort. However, on the cluster platform the opposite is true.
SAMPLE sorting outperforms RADIX sorting. This result verifies that reducing message_, ts much more important on
the cluster than increasing the computations (despite the large increase in local computati_m here J.

Note that the LOCAL time in SAMPLE sort is onl) slightly higher than in RADIX. even though much more
computation is performed in SAMPLE. This means that the contention on the memor', bu_- for RADIX sorting is much
higher than for the SAMPLE sort, due to the more sequential memory, access panems.
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Figure 13: The SAMPLE time breakdown for SAS and MPI on 32 processors for 32M integers

4.6 N-BODY

Finally, we examine the performance of the N-BODY application. From Figure 14, we find that MPI still performs

better than SAS, especially with the increase of data sets. For 128K bodies and 32 processors, MPI achieves a speedup

of 27 compared to speedup of 15 using SAS. The time breakdown for 128K data set on 32 processors is shown in

Figurel5. SAS has higher SYNC time and RMEM time, but the SYNC time is much higher and dominates. This is

because at each synchronization point, many diffs and write notices need to be processed. Also, many shared pages

have to be invalidated. So the synchronization wait time is further dilated due to serialization. Further analysis shows

that 82% of the barrier time is spent on protocol handling. This expensive synchronization problem occurs in all of our

applications except LU, and the performance of SVM programs suffer heavily from it. Further research on the SVM

coherence protocol should focus on reducing the synchronization cost. Possible approaches include applying the diffs

before the synchronization points, moving invalidating shared pages out of synchronization points, and increasing

hardware supports.

25

2O

IO

O

le 32 _ 32
32K 12|K

Figure 14: Speedups of N-BODY for SAS and MPI on 16 and 32 processors for 32K and 128K bodies

Unlike our other five applications, the MPI version of N-BODY has a higher time LOC.M_ than the SAS code. This

is due to the use of different high level algorithms for each programming model. In the SAS program, a shared tree

is built and each processor builds one part of it: while in MP1 program, a locallx essential tree is used. Building the

locally essential tree is quite expensive and involves a lot of more computation. A processor has to first build a local

tree using those bodies partitioned to it. then it computes the nodes needed by everx other processors from its local tree
and sends those nodes to their destination. After receiving all the necessau, nodes for the ensuing force calculation,

it has to add them into its local tree and generate the locally essential tree. Thus. a lot of computation overhead has

been introduced into the MPI version for building locally essential trees. With the increase of larger data sets. these

differences in building the tree become less important and the force calculation phase begins to dormnate.

5 Implementation of Collective Functions for MPI

An interesting question for clusters, and particularl2_ hybrid clusters of SMPs. is hov, to structure collective commu-

nication. In the MPI library, the communication functions can be divided into three categories: the basic send/receive
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Figure 15: The N-BODY time breakdown for SAS and MPI on 32 processors for 128K bodies

functions, collective functions, and other operations. The performance of the basic send/receive are mainly depen-

dent on the underlying communication hardware and low-level software. However, the performance of the collective

functions are affected by their implementation algorithms. Research in this area has been performed for several other

platforms [21]. In this section, we discuss the algorithms suitable for our platform: a clusters of 4-way SMPs. Specif-

ically, we explore the algorithms for two collective functions, MPl_Allreduce and MPI_Mlgather that are used in

our applications. Here, we call the MPUPro implementation the "original" (the exact algorithms used are not well
documented) and use it as our baseline.

5.1 MPl_Allreduce

The most commonly used algorithm is the binary tree (B-Tree) which is shown in Figure 16. The structure of our
4-way SMP nodes leads us to change the lowest level of the tree to a four-way structure (called B-Tree-4). And within

a node, the communication can either be implemented by shared memory or basic MPI send/receive functions. We
observe no difference in performance between these two in-node approaches for the collective communication. The

result for reducing a double variable is shown in Table 2. The binary tree algorithm performs similarly to the MPUPro
implementation. The B-Tree-4 algorithm performs somewhat better.

/

! /

.oo ,ooo .oo oooo

Figure 16: The algorithms used to implement the MPl_Allreduce using t_'o nodes as an example

Algorithm Original B-Tree B-Tree-4

Time (us) 1117 1035 981

Table 2: The time needed for MPl_a.llreduce on 32 processors 18 nodes _for different algorithms

5.2 MPl_Aligather

We explored several algorithms for this case. The first method is the binary tree method, and the second is the B-Tree-4
approach. To understand their behavior, we examine level 0 and level 1 (see Figure 16). In the B-Tree-4 algorithm,
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afterthelevel-0processorcollectsallthedata,itbroadcastsallthecollecteddatatolevel-1processors,thenfromlevel-
1tolevel-2andsoon.Atthistime,eachprocessorinlevel1alreadyownsthosedatacollectedfromthesubtreerooted
atit.Soit isnotnecessary'tobroadcastallthedatabacktothemInstead,thoseprocessorsinlevel1canimmediately
exchangedatathemselves.Therearetwoprocessorsleftin level1. Thesetwocanjustexchangedatathemselves.
WecallthisalgorithmB-Tree-4-New.Wecanfurtherextendthisideatolevel-2.IntheB-Tree-4-Newalgorithm.
thefourprocessorsin level-2exchangedataamongstthemselves.Eachprocessorneedstwosend/receivefunction
calls.ThismethodiscalledB-Tree-4-New-2.InTable3,wepresentthetimeneededforthedifferentalgorithmsto
performtheallgatherfunctionfor 1K-integerandl-integermessages.Wefoundthatusingthenewalgorithm,the
performanceonourplatformhasbeengreatlyimproved,indicatingthattheoriginalMPI-Proalgorithmdoesn'tuse
theoptimizationofsendingdownonly'thenecessarydataandperformingadataexchange.However,sincemostof
theremotecommunicationtimein theapplicationswasspentonthesend/receivefunctions,theoverallperformance
wasonly,slightly'improved.

AlgorithmOriginal
Time(IK) 1538
Time(1) 1633

B-Tree
1540
1052

B-Tree-4B-Tree-4-Neui B-Tree-4-Neu-2
1479 1395 i 1124
993 994 ] Q75

Table3:ThetimeneededforMPl_Allgatheron32processors(8nodes)fordifferentalgorithmsusingIkandI integers

6 Conclusion

In this paper, we studied the performance of and programming effort for six applications using message-passing

and SAS programming on a 32 CPU PC cluster. The system consisted of eight 4-way Pentium Pro SMPs running

WINDOWS NT 4.0. To create a fair comparison between the two programming methodologies, we used the best

known implementations of the communication libraries. The message-passing version of MPIfPro is implemented

directly, on top of the Giganet network by the VIA interface, which the Giganet netv,ork interface implements in

hardware. The SAS implementation is a shared virtual memory (SVM) implementation and uses the GeNIMA protocol

over the VMMC low-level communication library,, which is implemented in firmware and software on the Myrinet

network. Experiments showed that VIA and VMMC have similar latency, and bandwidth characteristics on the cluster

platform. The GeNIMA protocol has been developed for page-grained shared address space on clusters, and uses

general purpose network interface support to significantly reduce protocol overhead. Our application suite consists of

several codes that are challenging for scalable performance due to their high communication to computation ratios and

complex communication patterns.

Three regular applications (FFT. OCEAN, and LU) and three irregularly structured codes (RM)IX, SAMPLE.
and N-BODY) were presented. Porting these applications did not require code modifications: however, some opti-

mizations were performed to improve performance on the cluster platform. Changes included reducing the number

of messages in the message-passing versions, and removing fine-grained synchronizations from SAS codes. FFT.

OCEAN, RADIX, and SAMPLE did not scale well under both programming models due to their high communication

to computation ratios and/or the limited bandwidth of the memory, bus on the 4-,x ay SMP nodes (and the resulting con-

tention between communication and local computation). LU and N-BODY shov, ed better performance characteristics

due to lower communication-to-computation ratios.

Overall, SVM provides a substantial ease of programming, especially for the more complex applications which

are irregular or dynamic in nature. However, unlike in a previous study for hardware-coherent machines where the

shared address space implementations were also performance-competitive with MPLT"despite all the research in SVM

protocols and communication libaries in the last several years SVM achieved only about half the parallel efficienc\

of MPI for most of our applications. LU was an exception, in which the SVM implementation achieved verx similar

performance to the MPI version. The higher runtimes of the SVM versions _ere due to high cost of the protocol

overhead associated with maintaining page coherence and implementing synchronizations. These costs include: com-

puting diffs, creating timestamps, generating write notices, and performing garbage collection. Thus, if very high

performance is the goal, then the difficulty of MPI programming appears to be justified for commodity, clusters of

SMPs today. On the other hand, if ease of programming is important then SVM provides it at roughly' a factor-of-two

cost in performance for many applications (and less for others). This ma t' be considered encouraging for SVM, given

the ease of programming advantages for complex applications as well as the difficult nature of our application suite and

the relative maturity of the MP1 library. Application-driven research into coherence protocols and extended hardware

support should reduce SVM and SAS overheads on future systems.

Finally. we presented new algorithms for implementing MPI collective functions on our PC cluster platform

Results show that some of these techniques achieve a significant improvement compared the default MPI/Pro imple-
mentation.
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